The generator matrix

 1  0  1  1  1  1  1  0  1  1  3  1  1  1  1  0  1  1  1  X  1  1 X+3  1  1  1  1 X+3  1  1  3  1  1  1 2X+6  1  1  1  X  1  1  1  1  1  1  1 2X+3  1  3  X  1  X  1  1  1  1  1  1  6  1 2X+3  1  3  1 X+3  1  1  1 2X+6  1 X+3  1  1  1  1  1  1  1  1  1  1  3  1 X+3  1  1  1 X+3  1
 0  1  1  8  3 2X+1  8  1  0  8  1 2X+4 2X+7 2X X+8  1 2X+5 X+4  3  1 X+2  1  1 2X  7  X 2X+8  1 2X+3 X+7  1  8  4  3  1 2X+3 X+2  2  1  7 2X+8  1 2X+6 2X+6 X+5 2X+6  1 X+5  1  1 2X+6  1  1 2X+5 X+7  3  X  5  1 2X+4  1 2X+5  1 X+7  1  6 2X+5 2X+4  1  2  1  2 2X+1 2X+4 X+3 2X+1  0 2X+1 2X+2 2X+3 2X  1  4  1 2X+7 X+6 2X+6  1 2X+1
 0  0 2X  0  3  0  0  0  3  3  6  6  6  3 X+6 2X 2X+3 X+3 2X+3 2X+6 X+6 2X 2X 2X 2X+6 X+6  X X+3 2X+6  X X+6 2X+3  X X+6  X X+3  X 2X  0 2X  X  3  6  6 2X+6 2X+3 X+6 2X X+6 2X X+6  0  6  0 2X+6 2X+3 X+6 2X X+6 2X+6  6 X+3 2X+6  6  6  X  0 X+6 X+6 2X+3  X  3 X+6 X+3  X 2X 2X+3 X+3 X+3 2X+3  X 2X  0  3 X+3 2X 2X+3  3  3
 0  0  0  X X+3 X+6  6 2X+3 2X 2X+6  X 2X  6  0  6  6 X+3 2X  X X+6 2X+6 X+6 2X+3  3 2X+3  0  X  X 2X+6  6 2X  6 X+6 2X  3 X+6 2X+6 2X X+6 2X+6  3 X+6 X+6 2X+6 X+6 2X X+3  6  6  0  0  3  6  0 X+3 X+3 2X 2X+6 X+6 X+3  0 2X+3 2X 2X  X  X X+3 2X+6 2X  0  6  X  X X+3 2X+6 2X+3 2X 2X  X  3 X+3 2X+3 2X 2X+6  3 2X X+6 X+6 X+6

generates a code of length 89 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 168.

Homogenous weight enumerator: w(x)=1x^0+864x^168+432x^169+576x^170+2884x^171+2070x^172+2196x^173+4230x^174+3474x^175+3996x^176+5880x^177+4698x^178+5346x^179+5750x^180+4950x^181+3096x^182+4056x^183+1656x^184+810x^185+996x^186+216x^187+18x^188+366x^189+228x^192+144x^195+96x^198+18x^201+2x^207

The gray image is a code over GF(3) with n=801, k=10 and d=504.
This code was found by Heurico 1.16 in 20 seconds.